Machine Learning & Data Science Online Course

 

ML & Data Science Complete Bootcamp (2022 Edition)

Machine Learning 101

  • What Is Machine Learning?
  • Al/Machine Learning/Data Science
  • Exercise: Machine Learning Playground
  • How Did We Get Here?
  • Exercise: YouTube Recommendation Engine
  • Types of Machine Learning
  • Are You Getting It Yet?
  • What Is Machine Learning? Round 2
  • Section Review
  • Monthly Coding Challenges, Free Resources and Guides

Machine Learning and Data Science Framework

  • Section Overview
  • Introducing Our Framework
  • 6 Step Machine Learning Framework
  • Types of Machine Learning Problems
  • Types of Data
  • Types of Evaluation
  • Features In Data
  • Modelling - Splitting Data
  • Modelling - Picking the Model
  • Modelling - Tuning
  • Modelling - Comparison
  • Overfitting and Underfitting Definitions
  • Experimentation
  • Tools We Will Use
  • Optional: Elements of Al

Data Science Environment Setup

  • Section Overview
  • Introducing Our Tools
  • What is Conda?
  • Conda Environments
  • Mac Environment Setup
  • Mac Environment Setup 2
  • Windows Environment Setup
  • Windows Environment Setup 2
  • Linux Environment Setup
  • Sharing your Conda Environment
  • Jupyter Notebook Walkthrough
  • Jupyter Notebook Walkthrough 2
  • Jupyter Notebook Walkthrough 3

Pandas: Data Analysis

  • Section Overview
  • Downloading Workbooks and Assignments
  • Pandas Introduction
  • Series, Data Frames and CSVs
  • Data from URLs
  • Describing Data with Pandas
  • Selecting and Viewing Data with Pandas
  • Selecting and Viewing Data with Pandas Part 2
  • Manipulating Data
  • Manipulating Data 2
  • Manipulating Data 3
  • Assignment: Pandas Practice
  • How To Download The Course Assignments

NumPy

  • Section Overview
  • NumPy Introduction
  • Quick Note: Correction In Next Video
  • NumPy DataTypes and Attributes
  • Creating NumPy Arrays
  • NumPy Random Seed
  • Viewing Arrays and Matrices
  • Manipulating Arrays
  • Manipulating Arrays 2
  • Standard Deviation and Variance
  • Reshape and Transpose
  • Dot Product vs Element Wise
  • Exercise: Nut Butter Store Sales
  • Comparison Operators
  • Sorting Arrays
  • Turn Images Into NumPy Arrays
  • Exercise: Imposter Syndrome
  • Assignment: NumPy Practice
  • Optional: Extra NumPy resources

Matplotlib: Plotting and Data Visualization

  • Section Overview
  • Matplotlib Introduction
  • Importing And Using Matplotlib
  • Anatomy Of A Matplotlib Figure
  • Scatter Plot And Bar Plot
  • Histograms And Subplots
  • Subplots Option 2
  • Quick Tip: Data Visualizations
  • Plotting From Pandas DataFrames
  • Quick Note: Regular Expressions
  • Plotting From Pandas DataFrames 2
  • Plotting from Pandas DataFrames 3
  • Plotting from Pandas DataFrames 4
  • Plotting from Pandas DataFrames 5
  • Plotting from Pandas DataFrames 6
  • Plotting from Pandas DataFrames 7
  • Customizing Your Plots
  • Customizing Your Plots 2
  • Saving And Sharing Your Plots
  • Assignment: Matplotlib Practice

Scikit-learn: Creating Machine Learning Models

  • Section Overview
  • Scikit-learn Introduction
  • Quick Note: Upcoming Video
  • Refresher: What Is Machine Learning?
  • Quick Note: Upcoming Videos
  • Scikit-learn Cheatsheet
  • Typical scikit-learn Workflow
  • Optional: Debugging Warnings In Jupyter
  • Getting Your Data Ready: Splitting Your Data
  • Quick Tip: Clean, Transform, Reduce
  • Getting Your Data Ready: Convert Data To Numbers
  • Note: Update to next video (OneHotEncoder can handle NaN/None values)
  • Getting Your Data Ready: Handling Missing Values With Pandas
  • Extension: Feature Scaling
  • Note: Correction in the upcoming video (splitting data)
  • Getting Your Data Ready: Handling Missing Values With Scikit-earn
  • NEW: Choosing The Right Model For Your Data
  • NEW: Choosing The Right Model For Your Data 2 (Regression)
  • Quick Note: Decision Trees
  • Quick Tip: How ML Algorithms Work
  • Choosing The Right Model For Your Data 3 (Classification)
  • Fitting A Model To The Data
  • Making Predictions With Our Model predict vs predict _probal)
  • NEW: Making Predictions With Our Model (Regression)
  • NEW: Evaluating A Machine Learning Model (Score) Part 1
  • NEW: Evaluating A Machine Learning Model (Score) Part 2
  • Evaluating A Machine Learning Model 2 (Cross Validation)
  • Evaluating A Classification Model 1 (Accuracy)
  • Evaluating A Classification Model 2 (ROC Curve)
  • Evaluating A Classification Model 3 (ROC Curve)
  • Reading Extension: ROC Curve + AUC
  • Evaluating A Classification Model 4 (Confusion Matrix)
  • NEW: Evaluating A Classification Model 5 (Confusion Matrix)
  • Evaluating A Classification Model 6 (Classification Report)
  • NEW: Evaluating A Regression Model 1 (R2 Score)
  • NEW: Evaluating A Regression Model 2 (MAE)
  • NEW: Evaluating A Regression Model 3 (MSE)
  • Machine Learning Model Evaluation
  • NEW: Evaluating A Model With Cross Validation and Scoring Parameter
  • NEW: Evaluating A Model With Scikit-learn Functions
  • Improving A Machine Learning Model
  • Tuning Hyperparameters
  • Tuning Hyperparameters 2
  • Tuning Hyperparameters 3
  • Note: Metric Comparison Improvement
  • Quick Tip: Correlation Analysis
  • Saving And Loading A Model
  • Saving And Loading A Model 2
  • Putting It All Together
  • Putting It All Together 2
  • Scikit-Learn Practice

ML Classification

  • Section Overview
  • Proiect Overview
  • Project Environment Setup
  • Optional: Windows Project Environment Setup
  • Step 1~4 Framework Setup
  • Getting Our Tools Ready
  • Exploring Our Data
  • Finding Patterns
  • Finding Patterns 2
  • Finding Patterns 3
  • Preparing Our Data For Machine Learning
  • Choosing The Right Models
  • Experimenting With Machine Learning Models
  • Tuning/Improving Our Model
  • Tuning Hyperparameters
  • Tuning Hyperparameters 2
  • Tuning Hyperparameters 3
  • Quick Note: Confusion Matrix Labels
  • Evaluating Our Model
  • Evaluating Our Model 2
  • Evaluating Our Model 3
  • Finding The Most Important Features
  • Reviewing The Project

ML Time Series Data

  • Section Overview
  • Project Overview
  • Downloading the data for the next two projects
  • Project Environment Setup
  • Step 1~4 Framework Setup
  • Exploring Our Data
  • Exploring Our Data 2
  • Feature Engineering
  • Turning Data Into Numbers
  • Filling Missing Numerical Values
  • Filling Missing Categorical Values
  • Fitting A Machine Learning Model
  • Splitting Data
  • Challenge: What's wrong with splitting data after filling it?
  • Custom Evaluation Function
  • Reducing Data
  • Randomized Search CV
  • Improving Hyperparameters
  • Preprocessing Our Data
  • Making Predictions
  • Feature Importance

Data Engineering

  • Data Engineering Introduction
  • What Is Data?
  • What Is A Data Engineer?
  • What Is A Data Engineer 2?
  • What Is A Data Engineer 3?
  • What Is A Data Engineer 4?
  • Types Of Databases
  • Quick Note: Upcoming Video
  • Optional: OLTP Databases
  • Optional: Learn SQL
  • Hadoop, HDFS and MapReduce
  • Apache Spark and Apache Flink
  • Kafka and Stream Processing

Neural Networks: Deep Learning, Transfer Learning and TensorFlow 2

  • Section Overview
  • Deep Learning and Unstructured Data
  • Setting Up With Google
  • Setting Up Google Colab
  • Google Colab Workspace
  • Uploading Project Data
  • Setting Up Our Data
  • Setting Up Our Data 2
  • Importing TensorFlow 2
  • Optional: TensorFlow 2.0 Default Issue
  • Using A GPU
  • Optional: GPU and Google Colab
  • Optional: Reloading Colab Notebook
  • Loading Our Data Labels
  • Preparing The Images
  • Turning Data Labels Into Numbers
  • Creating Our Own Validation Set
  • Preprocess Images
  • Preprocess Images 2
  • Turning Data Into Batches
  • Turning Data Into Batches 2
  • Visualizing Our Data
  • Preparing Our Inputs and Outputs
  • Optional: How machines learn and what's going on behind the
  • scenes?
  • Building A Deep Learning Model
  • Building A Deep Learning Model 2
  • Building A Deep Learning Model 3
  • Building A Deep Learning Model 4
  • Summarizing Our Model
  • Evaluating Our Model
  • Preventing Overfitting
  • Training Your Deep Neural Network
  • Evaluating Performance With TensorBoard
  • Make And Transform Predictions
  • Transform Predictions To Text
  • Visualizing Model Predictions
  • Visualizing And Evaluate Model Predictions 2
  • Visualizing And Evaluate Model Predictions 3
  • Saving And Loading A Trained Model
  • Training Model On Full Dataset
  • Making Predictions On Test Images
  • Submitting Model to Kaggle
  • Making Predictions On Our Images

Storytelling + Communication: How To Present Your Work

  • Section Overview
  • Communicating Your Work
  • Communicating With Managers
  • Communicating With Co-Workers
  • Weekend Project Principle
  • Communicating With Outside World
  • Storytelling
  • Communicating and sharing your work: Further reading

Learn Python

  • What Is A Programming Language
  • Python Interpreter
  • How To Run Python Code
  • Our First Python Program
  • Latest Version Of Python
  • Python 2 vs Python 3
  • Exercise: How Does Python Work?
  • Learning Python
  • Python Data Types
  • How To Succeed
  • Numbers
  • Math Functions
  • DEVELOPER FUNDAMENTALS: I
  • Operator Precedence
  • Exercise: Operator Precedence
  • Optional: bin() and complex
  • Variables
  • Expressions vs Statements
  • Augmented Assignment Operator
  • Strings
  • String Concatenation
  • Type Conversion
  • Escape Sequences
  • Formatted Strings
  • String Indexes
  • Immutability
  • Built-In Functions + Methods
  • Booleans
  • Exercise: Type Conversion
  • DEVELOPER FUNDAMENTALS: I
  • Exercise: Password Checker
  • Lists
  • List Slicing
  • Matrix
  • List Methods
  • List Methods 2
  • List Methods 3
  • Common List Patterns
  • List Unpacking
  • None
  • Dictionaries
  • DEVELOPER FUNDAMENTALS: III
  • Dictionary Keys
  • Dictionary Methods
  • Dictionary Methods 2
  • Tuples
  • Tuples 2
  • Sets
  • Sets 2

Learn Python Part 2

  • Breaking The Flow
  • Conditional Logic
  • Indentation In Python
  • Truthy vs Falsey
  • Ternary Operator
  • Short Circuiting
  • Logical Operators
  • Exercise: Logical Operators
  • is vs ==
  • For Loops
  • Iterables
  • Exercise: Tricky Counter
  • range()
  • enumerate ()
  • While Loops
  • While Loops 2
  • break, continue, pass
  • Our First GUI
  • DEVELOPER FUNDAMENTALS: IV
  • Exercise: Find Duplicates
  • Functions
  • Parameters and Arguments
  • Default Parameters and Keyword Arguments
  • return
  • Exercise: Tesla
  • Methods vs Functions
  • Docstrings
  • Clean Code
  • *args and **kwargs
  • Exercise: Functions
  • Scope
  • Scope Rules
  • global Keyword
  • nonlocal Keyword
  • Why Do We Need Scope?
  • Pure Functions
  • map()
  • filter()
  • zip()
  • reduce/)
  • List Comprehensions
  • Set Comprehensions
  • Exercise: Comprehensions
  • Python Exam: Testing Your Understanding
  • Modules in Python
  • Quick Note: Upcoming Videos
  • Optional: PyCharm
  • Packages in Python
  • Different Ways To Import
  • Next Steps
  • Bonus Resource: Python Cheatsheet
$1000 month
$10000 year
  • On Demand
  • 30+ Bonus Resources
  • Access Private Discord
  • Certificate of Completion
  • 24/7 Support
Buy Now

Instructor

...
Zayne Harris